[Contribution No. 166 from the Department of Chemistry and Chemical Engineering of The University of Texas]

The Pressure-Volume-Temperature Relations for Gaseous Monomethylamine ${ }^{1}$

By Charles T. Kenner with W. A. Felsing

Introduction

The possible and probable use of monomethylamine as the refrigerating fluid in the absorption type of refrigerating units has led to the determination of its thermodynamic properties in this Laboratory. ${ }^{2}$ Since the chemical literature records no systematic investigation of the pressure-volume-temperature relations, such determinations constituted the experimental object of this study.

Leduc ${ }^{3}$ has proposed an equation of state for monomethylamine, based not upon $p-y-T$ relations, but derived by aid of the theory of corresponding states. Mehl ${ }^{4}$ has proposed an equation of state of the Callendar-Mollier type based upon a knowledge of some specific gas volumes and of the heat-capacity ratio.

In this investigation an equation of state will be fitted to the observed $p-v-T$ data.

The Proposed Method.-The method adopted for this investigation is the one that has been in common usage at the Research Laboratory of Physical Chemistry at the Massachusetts Institute of Technology, and which has been described in numerous papers. ${ }^{5}$ The method, in essentials, consists of determining the pressures developed by a given mass of substance at different temperatures, the volume being held constant. Thus is obtained a series of pressure-temperature relations at different specific volumes.

From the experimental data thus obtained, an equation of state of the Keyes type ${ }^{6}$ was derived: this relation reproduces the experimental values with satisfactory accuracy.
(1) Constructed from a thesis presented to the Graduate Faculty of The University of Texas by Charles T. Kenner in partial fulfilment of the requirements for the degree of Doctor of Philosophy. June. 1939. Present address (C. T. K.): The Citadel. The Military College of South Carolina, Charleston.
(2) (a) Felsing and Thomas. Ind. Eng. Chem.. 21, 1269 (1929): (b) Felsing and Wohlford, This Journal. 54, 1442 (1932): (c) Felsing and Buckley. J. Phys. Chem., 37, 779 (1932): (d) Felsing and Jessen. This Journal. 65, 447 (1933): (e) Felsing and Ashby, ibid.. 56, 2226 (1934).
(3) Leduc. Compt. rend., 148, 407, 549 (1909).
(4) Mehl, Beihefte. Z. für gesamte K̈alie-Ind., No. 3, p. 27 (1933).
(5) (a) Keyes and Brownlee. "Thermodynamic Properties of Ammonia." John Wiley and Sons. Inc. New York, 1916. p. 11; (b) Keyes and Felsing. Teis Journal, 41, 589 (1919): (c) Beattie and Edel, Ann. Physik. 11, 633 (1931): (d) Keyes, Proc. Ans. Acad. Arts Sci. 68, 505 (1933).
(6) Keyes, Proc. Nall. Acad. Sci., 3, 323 (1917).

The Apparatus

The apparatus was a development of the dead-weight piston type pressure gage devised by Amagat and which has been thoroughly described by Keyes and Brownlee, ${ }^{\text {si }}$ Keyes and Felsing, ${ }^{5 b}$ and in its present form by Beattie and Edel ${ }^{5 \mathrm{c}}$ and by Keyes. ${ }^{5 \mathrm{~d}}$ No essential differences in design of the pressure measuring device existed. The accuracy attainable in pressure measurements alone is at least 1 part in 3000 at pressures below 10 atmospheres, 1 part in 10,000 or better for pressures 10 to 20 atmospheres, and 1 part in 20,000 for pressures above 20 atmospheres.

Temperatures were measured by a platinum resistance thermometer, calibrated by the National Bureau of Standards, in conjunction with a calibrated Mueller bridge and a high sensitivity galvanometer. The thermometer was calibrated again during the investigation at the icepoint, at the boiling point of water, and at the boiling point of mercury. The true boiling point temperatures of water and of mercury were evaluated from the observed data by means of the relations proposed by Beattie and Blaisdell ${ }^{7}$ and by Beattie, Blaisdell and Kaminsky. ${ }^{8}$ Temperatures could be measured readily with an accuracy of at least 0.001°.
The thermostat consisted of a large Pyrex dewar flask of about 10 inches (25 cm .) internal diameter and 24 inches (61 cm .) deep. The bath liquids were liquid paraffin, Crisco, or high melting paraffin, depending upon the temperature range. The temperature of the bath could be held constant to $=0.002^{\circ}$ for fifteen- to twenty-minute intervals.

All necessary parts of the assembly were calibrated carefully with mercury before use. The piston was calibrated by the method of Bridgeman, ${ }^{2}$ employing liquid carbon dioxide at 0°, where its vapor pressure is $26,144.7$ mm . The average millimeter equivalent of 1 g . on the piston was 2,00107 .

Preparation of Material

The best C. P. Eastman Kodak Co. monomethylamine hydrochloride was dried for several hours at 110°, followed by extended drying over sulfuric acid in a desiccator. This dried hydrochloride was extracted with highly purified, dry chloroform to remove any di- and trimethylamine hydrochlorides. The extracted salt was again dried at 110° and was kept over sulfuric acid.

After evacuation of the generating and drying system, ${ }^{1 r}$ the methylamine gas was generated by treatment of the purified hydrochloride (mixed with a small amount of yellow mercuric oxide to remove any ammonia) with a $40-50 \%$ potassium hydroxide solution. The liberated gas passed through several long drying tubes filled with potas-

[^0]sium hydroxide pellets into a reservoir partially filled with sodium wire and cooled by a dry-ice-acetone mixture. The liquefied amine was allowed to remain in contact with the sodium for at least eight hours until a blue color developed in the solution; this blue color was caused, most probably, by the formation of solvated sodium ions and indicated that the amine was dry. During this period the system was "flushed out" several times by opening the connection to the vacuum system for short intervals, to remove the hydrogen formed. From this reservoir the amine was condensed into an evacuated glass reservoir surrounded by dry-ice; again this system was flushed repeatedly to remove any permanent gas. The amine finally was condensed into a metal reservoir for storage.

From this storage reservoir the amine was distilled in a vacuum into a calibrated three-bulb volumeter of the form described by Keyes and Felsing. ${ }^{5 b}$ The loading of the piezometer also followed their procedure, except that liquid air was used as the bath surrounding the piezometer during the loading process. This procedure ensured a negligible error in determining the amount of amine left in the volumeter and in the lines of the loading apparatus because of the extremely low vapor pressure of the amine at liquid air temperatures. ${ }^{2 \mathrm{~s}}$

The Experimental Data

The experimental data, calculated to atmospheres, are presented in the table, together with the values of the pressure calculated by the

Fig. 1.-Run I, specific volumes, 74.151 and 48.115 cc ; Run II, spec. vol., $107.058,69.726$, and 35.796 cc.; Run III, spec. vol., 79.756 , 51.753 , and 26.583 cc .; Run IV, spec. vol,, 90.253 . 58.514. and 30.002 cc .; and Run V. 52.588 and 34.088 cc .
equation of state fitted to the observed data, as shown in the section following.

Treatment of Results

The observed pressures were plotted on a large scale as functions of the temperature at the various specific volumes (see figure). The lines were linear over the entire range, though, in several runs, the first and last points seem to indicate a slight curvature. For the purpose of evaluating an equation of state, it was considered sufficiently accurate to consider these isometrics to be linear. Values of $(\partial p / \partial T)_{v}$ were determined from these linear relations; these values are shown in the table.

It was decided to apply the Keyes equation ${ }^{6}$ to the data of this investigation; this equation has the form

$$
p=R T /(v-\delta)-A /(v-l)^{2}
$$

where $\delta=f(T)$ and A and l are constants characteristic of the substance. On differentiation, this equation leads to the expression

$$
(\partial p / \partial T)_{v}=R /(v-\delta) \text { or } \delta=v-R /(\partial p / \partial T)_{v}
$$

The values of $(\partial p / \partial T)_{v}$, as determined for each isometric, were used to calculate values of δ. A plot of $\log _{10} \delta$ as a function of $1 / v$ yielded a linear relation between δ and the volume, v

$$
\log _{10} \delta=1.0548-6.120 / v
$$

which relation reproduces the observed δ values fairly well, except at large specific volumes.

The cohesive pressure term, ϕ, in the Keyes equation is

$$
\phi=A /(v-l)^{2}=\left(\frac{R T}{v-\delta}\right)-p
$$

The values of ϕ are calculated readily from values of δ and of p at any given T. The values of ϕ were calculated for each individual measurement; the average of these closely agreeing values was taken as the correct ϕ for the particular specific volume. Since

$$
\phi=A /(v-l)^{2} \text { and } v=\left(A^{1 / 2} / \phi^{1 / 2}\right)+l
$$

a graphical representation of $1 / \phi^{1 / 2}$ as a function of v yielded the linear relation $\phi=17,940 /(v+1.759)^{2}$.

The Keyes type of equation, hence, for gaseous monomethylamine becomes

$$
\left[p+17,940 /(v+1.759)^{2}\right][v-\delta]=R T
$$

where $\log _{10} \delta=1.0548-6.120 / v$. The units here are atmospheres, cc. per gram, and

$$
\begin{aligned}
& T=273.16+t \\
& R=2.6421 \mathrm{cc} .-\mathrm{atm}
\end{aligned}
$$

A comparison of the pressures calculated by this equation with the observed pressures is given in the table.

Summary

1. The pressure-volume-temperature relations for gaseous monomethylamine have been measured over a temperature range of 60 to 225°, a specific volume range of approximately 27 to 107 cc. per gram, and a pressure range of approximately 7.5 to 38 atmospheres.
2. An equation of the Keyes type has been fitted to these data; this equation is

$$
p=\frac{R T}{(v-\delta)}-\frac{17,940}{(v+1.759)^{2}}
$$

where $\log _{10} \delta=1.0548-6.120 / v$. This equation reproduces the observed pressures satisfactorily.
Austin, Texas
Received June 12, 1939

[^0]: 7) Beattie and Blaisdell, Proc. Am. Acad. Arts Sci., 71, 361 (1937).
 (8) Beattie, Blaisdell and Kaminsky, ibid., 71, 375 (1937).
 (9) Bridgeman. This Journal. 49, 1174 (1927).
 (10) Felsing and Wohlford, ibid. 64, 1442 (1932).
